Corodyn[™] A Angiographic Balloon Flotation Catheter

BALLOON INFLATION STOPCOCK

Table 1						
French Size (Outer	Introducer Size	Usea				
Diameter mm)	Required	len				

French Size (Outer	Introducer Size	Useable	Maximum Balloon	Nominal Inflated	Maximum	Maximum Injection	Maximum Injection
Diameter mm)	Required	Length	Inflation Capacity	Balloon Diameter	Volume	Flow Rate	Pressure
5 F (1.65 mm)	6 F	50 cm	0.75 сс	8 mm	30 cc	10 cc/sec	650 PSI (4482 kPa)
5 F (1.65 mm)	6 F	80 cm	0.75 сс	8 mm	30 cc	7 cc/sec	650 PSI (4482 kPa)
6 F (1.98 mm)	7 F	60 cm	1.25 cc	10 mm	42 cc	16 cc/sec	700 PSI (4826 kPa)
6 F (1.98 mm)	7 F	90 cm	1.25 cc	10 mm	42 cc	15 cc/sec	700 PSI (4826 kPa)
7 F (2.31 mm)	8 F	110 cm	1.5 cc	12 mm	42 cc	18 cc/sec	900 PSI (6205 kPa)

DESCRIPTION

Angiographic balloon flotation catheters are used for the measurement of:

- Right atrial pressure
- Right ventricular pressure
- Pulmonary artery pressure
- Pulmonary capillary wedge pressure
- and Infusing solutions

They may be inserted without fluoroscopy, guided by continuous pressure monitoring. However, they are radiopaque so that fluoroscopy can be used to quide insertion or to verify position if desired. Angiographic balloon flotation catheters contain two lumens for the following purposes:

- Injection Used for injecting radiopaque media and measurement of right heart pressures. Terminates proximal to the balloon in 2 rows of 3 or 4 holes each.
- Balloon Provides a means for inflating and deflating the balloon located near the tip of the catheter, facilitating catheter advancement and measurement of pulmonary artery pressure.

Catheter body made from PUR material.

INDICATIONS FOR USE

The Angiographic Balloon Catheter is designed for use in right heart catheterization for cardiac

angiography, pulmonary angiography and measurement of the right heart and pulmonary artery pressures. It can be used to inject radiopaque media and measure pressures in any chambers and vessels that can be entered from the right heart.

CONTRAINDICATIONS

There are no absolute contraindications for pulmonary angiography. Relative contraindications include: severe pulmonary hypertension, especially if accompanied by right ventricular failure; severe hypoxemia; left bundle branch block; uncontrolled congestive heart failure; uncontrolled arrhythmias; renal dysfunction, or history of radiocontrast agent reaction.

READ ALL INSTRUCTIONS, WARNINGS AND CAUTIONS CAREFULLY PRIOR TO USE.

CAUTION: This Product Contains Natural Rubber Latex Which May Cause Allergic Reactions. RISKS

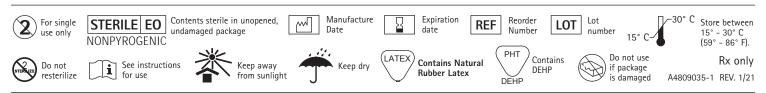
All invasive procedures involve some patient risks. The potential risks and benefits of catheter use should be carefully considered for each patient prior to insertion and at intervals while the catheter remains in place.

Patients with severe pulmonary hypertension, especially if accompanied by right ventricular failure; severe hypoxemia; left bundle branch block; uncontrolled congestive heart failure; uncontrolled arrhythmias; renal dysfunction, or history of radiocontrast agent reaction maybe at higher risk. Severe, sometimes fatal, complications have been associated with the use of pulmonary artery catheters. These complications include arrhythmias, knotting of the catheter, and pulmonary artery rupture.

Strict adherences to the foregoing instructions and the awareness of possible complications have been the most significant factors in reducing the incidence of complications.

The risks of pulmonary angiography are divided into three categories:

1. Radiocontrast material


Including anaphylactic reaction, volume overload and congestive heart failure, acute right ventricular failure, and acute renal failure.

2. Right heart catheterization

Including atrial and ventricular arrhythmias, right bundle branch block, complete heart block, bradycardia, cardiac perforation with or without cardiac tamponade, pyrogenic reactions, and catheter knotting.

3. Vascular

Injury at insertion site, including bleeding, infection, and thromboembolic complications. perforations, arteriovenous fistula formation, and

Distributed by: B. Braun Interventional Systems, Inc. Bethlehem, PA 18018-3524 USA Customer Service TEL: (877) 836-2228 FAX: (610) 849-1334 Technical Support TEL: (800) 443-8362

Interventional Systems BRAUN SHARING EXPERTISE

Manufactured by: B. Braun Medical Inc. Bethlehem, PA 18018-3524 USA

other vascular trauma have been reported with the use of vascular catheters and complications may develop during any catheterization procedure.

WARNING

- Pulmonary complications may result from improper inflation technique.
- To avoid damage to the pulmonary artery and possible balloon rupture, do not inflate balloon above the recommended volume as stated in Table 1. Exceeding this volume will not appreciably increase the diameter of the balloon and may increase the possibility of balloon rupture.
- Filtered CO₂ must be used to inflate the balloon if there is a possibility that balloon rupture would result in air embolus in the heart or arterial circulation. Liquids must not be used as a balloon inflation medium. If the balloon should inadvertently rupture, CO₂ is rapidly absorbed into the blood, significantly reducing the possibility of air embolus.
- Due to arm movement, malposition and perforation may occur more frequently when a transbrachial approach is used.

PRECAUTIONS

- To avoid damage to the catheter or balloon when a cut down is used, it is recommended that a vessel dilator or disposable vein guide be used. Never use forceps on the catheter.
- Use catheter only with recommended introducer sizes (see Table 1).
- Always deflate the balloon prior to withdrawing the catheter.
- To minimize ventricular irritability, inflate the balloon before the catheter reaches the right ventricle.
- If CO₂ is used as inflation medium, care must be taken to compensate for diffusion through the latex balloon. When catheter insertion is not complete after 2 to 3 minutes of balloon inflation, completely deflate the balloon by removing the balloon syringe and opening the stopcock to vent the balloon lumen. Reinflate with recommended volume of CO₂ to advance the catheter.
- A flow directed catheter may migrate into the distal pulmonary artery and spontaneous wedging may occur. To detect the occurrence of spontaneous wedging, pulmonary artery pressure should be monitored continuously.
- Do not leave the catheter in the pulmonary capillary wedge position for prolonged periods of time. Always deflate the balloon after measurement of pulmonary capillary wedge pressure.
- It is generally recommended that the catheter not be left in the patient for longer than three days.
- A continuous drip or an intermittent flush should be used to maintain patency of lumen.
- Do not flush the catheter when obtaining wedge pressure measurements in the pulmonary artery. Doing this increases the danger of rupture of the pulmonary artery.
- Infusion of viscous solutions such as whole blood is not recommended.
- Damping of the pressure tracing may indicate the formation of a blood clot at the distal tip. Do not flush catheter if blood cannot be aspirated, as this may cause pulmonary extravasation.
- Angiograms must be done with the balloon partially inflated to minimize myocardial staining.

INSTRUCTIONS FOR USE

CATHETER INSPECTION AND TESTING:

Angiographic catheters are supplied in sterile packages. Inspect the package. Do not use the catheter if there is any evidence that the package has been punctured or that the catheter has been damaged. When using with other medical equipment, refer to the equipment's Instructions for Use.

- 1. Remove the catheter from the package using aseptic technique.
- 2. Inflate the balloon to recommended capacity (see Table 1) and immerse the balloon in sterile room temperature water or saline. If there is any evidence of air bubbles escaping the balloon or if the balloon will not remain inflated, do not use the catheter.
 - Note: Never use liquid for balloon inflation.
- 3. Flush all of the catheter lumens with a sterile solution of heparinized saline or 5% dextrose and water to insure patency and remove air.

CATHETER INSERTION: Use Aseptic Technique.

The following instructions are general for informational purposes and are only provided as an aid to the physician:

- 1. Introduce the catheter by cut down or by percutaneous technique through a suitable needle or sheath.
- Gently advance the catheter into the superior or inferior vena cava. Entry of the catheter tip into the thorax is associated with increased respiratory fluctuation in pressure.
 Note: Should the catheter require stiffening during insertion, slowly perfuse the catheter with 5 mL or 10 mL cold sterile saline or 5% dextrose as the catheter is advanced through a peripheral vessel.
- 3. When the catheter is near the junction of the right atrium and the superior or inferior vena cava, the tip has been advanced approximately 40 cm from the right or 50 cm from the left antecubital fossa, 15 to 20 cm from the jugular vein, 10 to 15 cm from the subclavian vein or about 30 cm from the femoral vein. Using a volume limited syringe, inflate the balloon to the recommended volume (see Table 1).
- 4. Under continuous pressure and EKG monitoring, carefully advance the catheter. It will usually pass within 10 to 20 seconds through the right atrium, the right ventricle, into the pulmonary artery and into the pulmonary capillary wedge position.
- 5. If after advancing the catheter with the balloon inflated, pulmonary artery pressure is not obtained, deflate the balloon, withdraw the catheter into the right atrium (confirm by pressure monitoring or fluoroscopy) and repeat the procedure.

Note: Failure of a balloon flotation catheter to enter the right ventricle or pulmonary artery is rare, but may occur in patients with an enlarged atrium or ventricle, particularly if the cardiac output is low or in the presence of tricuspid incompetence. Deep inspiration by the patient during advancement may facilitate passage.

- Pulmonary artery pressure will be observed as soon as the balloon passes through the pulmonary valve.
- 7. Once the balloon becomes lodged in the wedge position, as noted on the pressure monitor, passively deflate the balloon. Note: After deflation of the balloon, the catheter tip may recoil toward the pulmonic valve and slip back into the right ventricle, requiring repositioning of the catheter.
- 8. Follow the contrast media manufacturer's instructions for use, contraindications, warnings and precautions.